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Abstract

This paper concerns the performance difference among the multidimensional (MD) gas-kinetic BGK scheme, the cor-
responding quasi-one-dimensional (Q1D) extension and the directional splitting (DS) scheme with kinetic boundary con-
ditions. The MD scheme includes tangential slopes in the flux calculation, which are absent in a Q1D or DS method. In
spite of taking more computational time, the MD scheme is found to be able to capture the characteristics of rarefied flow
having a boundary with curvature or a nonuniform temperature, such as the inverted velocity distribution in rarefied cylin-
drical Couette flow and the weak flow field induced by the temperature gradient of a body, where the Q1D fails. The MD
scheme can also yield clearly better results in high-speed microchannel flow and power-law fluid flow between concentric
rotating cylinders, when compared with direct simulation Monte Carlo studies and analytic solutions. In the low-
Reynolds-number flow around a NACA0012 airfoil case, the MD scheme and the Q1D method predict wall heat flux
distribution with obvious difference. The DS method predicts results nearly identical to those from Q1D in these steady
flow cases, except that it can hardly give reasonable solutions in power-law fluid case with viscous exponential factor away
from unity. Correct prediction of the stress and the wall temperature gradient is considered responsible for this better
performance. In simulations of the scalar convection–diffusion equation, it is found that the inclusion of tangential slopes
in the flux computation can clearly improve the temporal accuracy of the scheme. In this case, the DS scheme also shows
good performance. The present study suggests caution in adopting of the Q1D extension or DS method in multidimen-
sional flow when it is sensitive to the accuracy of stress or wall variable gradient calculations. It is better to use the
MD scheme for high-performance simulation.
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1. Introduction

Study of a genuinely multidimensional upwind scheme began more than a decade ago with expectations of
better characteristics, such as the accuracy [1–3], and efficiency for steady-state flow [4,5], when compared to
classical finite-volume methods. Based on the Bhatnagar–Gross–Krook (BGK) gas-kinetic model, an accurate
Navier–Stokes flow solver, gas-kinetic BGK scheme, has recently been developed [6–9]. In this scheme, the flux
at the cell interface is calculated through the particle distribution function, which is a solution of the Boltz-
mann–BGK equation with a constructed nonequilibrium initial gas distribution function and an equilibrium
state based on cell averaged flow quantities. For efficiency, early versions of the BGK scheme for multidimen-
sional flows are quasi-one-dimensional (Q1D) extensions, or directional splitting (DS) (operator splitting)
methods [6,7,10–13]. However, with the inclusion of the tangential slopes of conservative variables in the flux
at a cell interface, a truly multidimensional method (MD) can easily be constructed [8,9]. Consideration of all
the trajectories with appropriate weighting, according to the number of particles assigned to the trajectory by
the BGK solution, endows the scheme with intrinsic upwindedness [14].

In terms of flux evaluation, the MD BGK–NS solver takes 30% more computational time than the Q1D or
DS method for two-dimensional flows. However, the differences between the MD and DS BGK schemes in the
simulated heat flux and pressure distributions of hypersonic flow are negligible [9]. The large amount of
numerical dissipation introduced in the strong shock discontinuity region was considered to be responsible
for it, as for the smooth and continuous low speed flows, the MD gas-kinetic scheme [8] was found to give
much more accurate results than the corresponding DS method. For three-dimensional flow simulations,
the MD scheme is much more expensive and the difference between the MD and Q1D was found to be small
for a wide range of problems [15]. Thus the advantage and necessity of adopting the MD scheme still require
further study.

In the present work, the performances of the MD BGK–NS solver, the Q1D extension and the DS method
are investigated numerically in several typical cases, such as rarefied flow, non-Newtonian fluid flow between
rotating cylinders, scalar convection–diffusion flow, and low-Reynolds-number flow around a foil. Before the
performance demonstration, the numerical methods are introduced in the next section.
2. Numerical method

In the present study the MD BGK scheme is similar to Xu’s method [9], but with a inclusion of a scalar
transport [7], through which we expect to evaluate its order of accuracy. Although the treatment of disconti-
nuities is an important characteristic of the BGK method, here it is briefly described in the following by means
of a version for smooth flow [8] for simplicity. On the other hand, according to existing studies, as mentioned
above, the advantage of using an MD scheme can be better distinguished, without the additional numerical
dissipation from flow discontinuities.
2.1. Finite-volume BGK scheme with scalar transport

First, the two-dimensional (2D) BGK–Boltzmann equation can be written as
ft þ ufx þ vfy ¼ ðg � f Þ=s; ð1Þ
where f is the gas distribution function, g is the equilibrium state approached by f. They are both functions of
space x, y, time t, particle velocities (u,v), and internal variable n. s is the particle collision time. The equilib-
rium state is assumed to be a Maxwellian distribution,
g ¼ qðk=pÞðKþ3Þ=2e�kððu�UÞ2þðv�V Þ2þðh�HÞ2þn2Þ; ð2Þ
where n2 ¼ n2
1 þ n2

2 þ � � � þ n2
K , representing the internal energy of particles. k = 1/(2RT) is a function of tem-

perature T. q is the gas density. For convenience, capital letters are adopted in this section to represent the
macroscopic variables, such as the velocity U, V, and passive scalar H and lowercase letters denote micro-
scopic ones. The total number of degrees of freedom K in n is equal to (5 � 3c)/(c � 1) + 1 for a 2D flow,
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comprising the independent rotational degrees of freedom and the random motion of particles in the z direc-
tion. Here c is the specific heat ratio of a gas. In particle collisions, f and g satisfy the conservation constraint
Z

ðg � f ÞwdN ¼ 0 ð3Þ
at any point in space and time, for the conservation of mass, momentum and energy during particle collisions.
Here dN = dudvdhdn is the volume element in phase space with dn = dn1 dn2 � � � dnK, w is the vector of
moments
w ¼ ðw1;w2;w3;w4;w5Þ
T ¼ ð1; u; v; ðu2 þ v2 þ n2Þ=2; hÞT: ð4Þ
From Eqs. (1) and (3), the finite-volume formulation of the BGK scheme,
ðW�Þnþ1
ij ¼ ðW�Þnij þ

1

Sij

I
oXij

Z tnþDt

tn
F� dt dl ð5Þ
can be obtained, where Xij is a computational cell with area Sij and boundary oXij. The superscript ‘*’ refers to
the variable in global coordinates. The flux F* is calculated, through coordinate rotation, from that in the local
coordinates F,
F� ¼ ðF �1; F �2; F �3; F �4; F �5Þ
T ¼ ðF 1; nxF 2 � nyF 3; nyF 2 þ nxF 3; F 4; F 5ÞT: ð6Þ
Here, the local coordinates are constituted with the normal direction n and the tangential direction l of a cell
interface. For convenience, the calculation of F is presented through an example at a cell interface xi+1/2,j = 0,
�Dy/2 6 yi+1/2,j 6 Dy/2. The relations between the distribution function f and the macroscopic conservative
quantities W and the flux F are given by
W ¼ ðq; qU ; qV ; qe; qHÞT ¼
Z

f wdN; F ¼
Z

uf wdN: ð7Þ
Here the variable qe = p/(c � 1) + q(U2 + V2)/2 is the total energy of a gas with pressure p.
Provided that the distribution function at a cell interface is obtained through the reconstruction of the mac-

roscopic variables nearby, the Euler, or Navier–Stokes, or high-order equations, such as the Burnett equa-
tions, can be recovered, depending on which order of truncation is adopted in the Chapman–Enskog
expansion [16,17]. The fundamental work of a gas-kinetic method is thus to calculate such a distribution func-
tion. Numerical fluxes are then computed through Eqs. (7) and (6), and finally the conservative variable at the
next time step can be obtained according to Eq. (5).

2.2. Construction of the particle distribution function

The BGK equation (1) has the integral solution
f ðx; y; t; u; v; h; nÞ ¼ 1

s

Z t

0

gðx0; y 0; t0; u; v; h; nÞe�ðt�t0Þ=s dt0 þ e�t=sf0ðx� ut; y � vt; u; v; h; nÞ; ð8Þ
where x 0 = x � u(t � t 0), y 0 = y � v(t � t 0) is the trajectory of a particle’s motion and f0 is the initial gas dis-
tribution function at the beginning of each time step (t = 0). Once f0 and g are obtained, one can easily get the
time developing distribution function f. The key of the BGK scheme is thus to construct f0 and g according to
the Chapman–Enskog expansion,
f0ðx; y; u; v; h; nÞ ¼ g0½1� sðauþ bvþ AÞ þ axþ by�; ð9Þ
gðx; y; t; u; v; h; nÞ ¼ g0ð1þ axþ by þ tAÞ; ð10Þ
where terms a, b, A are from the Taylor expansion of a Maxwellian, and a, b are functions of the normal and
tangential slopes of conservative variables, and A is the temporal slope. g0 is the initial Maxwellian at the cell
interface,
g0 ¼ q0ðk0=pÞðKþ3Þ=2e�kððu�U0Þ2þðv�V 0Þ2þðh�H0Þ2þn2Þ: ð11Þ
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If the flow field is smooth enough, a continuous distribution function across the interface is adopted, the
macro conservative variables
W0 ¼ ðq0; q0U 0; q0V 0;q0e0; q0H0ÞT ð12Þ

and their gradients at the interface are computed by a linear interpolation. Other high-order reconstruction
can also be used to improve the accuracy [8]. The local terms a, b, A have a similar form such as
a ¼ a1 þ a2uþ a3vþ a4ðu2 þ v2 þ n2Þ=2þ a5h ¼ aawa; a ¼ 1–5: ð13Þ
where all coefficients aa, ba, Aa are local constants. Then f can be evaluated from f0 and g through expression
(8),
f ð0; 0; t; u; v; h; nÞ ¼ g0½1� sðauþ bvþ AÞ þ tA�: ð14Þ
Thus the fluxes across the cell interface can be calculated with Eq. (7). Then the fluxes in the global coordinates
can be obtained through Eq. (6). Finally, the conservative variables at the next time step can be calculated with
the finite-volume formulation (5).

The constants aa, ba are calculated through their relations with the gradients of macroscopic conservative
variables, $W,
1

q0

rxW ¼ 1

q0

Z
wag0 dN ¼Ma; ð15Þ

1

q0

ryW ¼ 1

q0

Z
wbg0 dN ¼Mb; ð16Þ
where
Mab ¼ ð1=q0Þ
Z

wawbg0 dN; a;b ¼ 1–5: ð17Þ
After integration of the above equation, the matrix M can be written with simple components and Eqs. (15)
and (16) can be directly resolved to get aa, ba, such as
a5 ¼
2k0

q0

oðq0H0Þ
ox

�H0

oq0

ox

� �
; ð18Þ
etc. The details can be found in the previous work [7]. Then, from the conservation constraint (3) as well as
Eqs. (10) and (14), the relation among a, b and A,
Z

ðauþ bvþ AÞwg0 dN ¼ 0 ð19Þ
can be obtained. Thus Aa can be calculated similarly as
MA ¼ � 1

q0

Z
ðauþ bvÞwg0 dN: ð20Þ
The collision time s is given by
s ¼ l0=p0; ð21Þ

where l0 and p0 are the macro viscous coefficient and pressure calculated from W0. The time step Dt is calcu-
lated from the CFL condition. In the above method, the Prandtl number Pr and Schmidt number Sc are both
equal to unity. To simulate a flow with any realistic values of Pr and Sc, a Prandtl number fixing procedure [6]
and a special treatment of the calculation of scalar flux [7] can be adopted.

2.3. Kinetic wall boundary condition

Since all the computations in a BGK scheme are based on the particle distribution function, the fluxes at a
wall can be easily calculated according to the interaction relation between the gas and a solid boundary
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[16,18,19]. The time accurate gas distribution function near the wall fi can be obtained through the same pro-
cedure as that of Eq. (14), with one-side interpolation of the conservative variables initially up to the wall,
f i ¼ g0½1� sðauþ bvþ AÞ þ At�; ð22Þ
in the normal direction, and the wall is assumed to be located at the left cell interface moving with tangential
velocity Vw. Thus the number of particles hitting on the wall can be evaluated and these particles will be re-
flected from the wall with a Maxwell distribution constructed according to the wall temperature kw,
gw ¼ qwðkw=pÞðKþ3Þ=2e�kwðu2þðv�V wÞ2þh2þn2Þ: ð23Þ

The requirement of no particles penetrating through the solid wall gives,
Z Dt

0

Z
u<0

uf i dNdt ¼ �
Z Dt

0

Z
u>0

ugw dNdt; ð24Þ
which gives the density near the wall qw,
qw ¼ �
2
ffiffiffiffiffiffiffiffi
pkw

p

Dt

Z Dt

0

Z
u<0

uf i dNdt: ð25Þ
As the reflected particles may not fully accommodate the wall conditions, the accommodation coefficient, r, is
introduced to represent the diffusive reflection population of particles, and (1 � r) for specularly reflected par-
ticles. Thus the total gas distribution function at the wall can be written as
f t ¼ rgw
u>0 þ f i

u<0 þ ð1� rÞf i
u>0ð�uÞ; ð26Þ
where the last term accounts for the component with specular reflection from the wall surface, and ‘�u’ means
the normal velocity changes its sign and other independent variables remain unchanged.

In high-speed flow, the temperature of the reflected particles may differ from the wall temperature. A
thermal accommodation coefficient a can also be introduced similarly to represent the accommodation of
the reflected particles with the wall (see [19] for details). Similarly other kinds of solid wall condition can
easily be constructed. Through these methods the flux across the solid boundary can be evaluated easily
and the velocity slip and temperature jump at wall boundary can be recovered automatically in the BGK
scheme.

More than one century ago, based on a similar construction of the distribution function at a wall, Maxwell
[20] deduced the well-known velocity slip boundary condition for macroscopic conservative variables, with the
assumption of the incident distribution function to be the same as the extrapolation of the asymptotic distri-
bution, after which many progresses have been made in the related fields. More accurate slip boundary con-
dition can be obtained by the analysis of the Knudsen layer, solving a half-space boundary value problem of
the linearized kinetic equation, resulting in the Knudsen-layer correction of the distribution function [21].
However, the simple combination of the incident distribution function from the first-order Chapman–Enskog
expansion and the reflected distribution function from the diffusive and specular reflection model with engi-
neering accommodation coefficients, leads to the velocity slip and temperature jump which are accurate at
least at the first-order of the Knudsen number O(Kn), as a solution of NS equation at low Knudsen number,
coming from the first-order Chapman–Enskog expansion, is the solution of Boltzmann equation at the accu-
racy of O(Kn), wherever outside or inside the thin Knudsen layer.

2.4. Analysis of the multidimensional method

As the particle distribution function in a BGK–NS solver is constructed based on the Chapman–Enskog
expansion, as shown in Eqs. (9), (10) and (14), the corresponding approximated control equations for macro-
scopic conservative variables are the NS equations and the linear convection–diffusion equation. The latter
can be simply deduced as follows.

The particle distribution function f in Eq. (14) can be rewritten as
f ¼ g � sDg; ð27Þ
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where D ¼ ot þ uioxi ; i ¼ 1; 2. Taking moments of wa again in the BGK equation (1), with the above f, and
considering the conservation constraint Eq. (3), we get
Z

wa Dg dN ¼
Z

swa DðDgÞdN; a ¼ 1–5; ð28Þ
where the variation of collision time s around a cell interface within a time step is ignored. However, the spa-
tial and temporal variations of s at different computational cells and different time steps are accounted for by
calculating s cell by cell based on the local viscosity and pressure (see Eq. (21)). Similar treatment is adopted to
get the analytic solution of BGK equation (8). One can see the left side of above equation,
La �
Z

wa Dg dN ¼ OðsÞ; a ¼ 1–5: ð29Þ
For w5 = h, it becomes
L5 �
Z

hDg dN ¼
Z

hðg;t þ ulg;lÞdN ¼ hhi;t þ hhuli;l ¼ OðsÞ; ð30Þ
where hð� � �Þi �
R
ð� � �Þg dN is used to simplify the notation. Similarly, the right side of Eq. (28) for w5 = h is,
R5 �
Z

shDðDgÞdN ¼
Z

shðg;tt þ 2ukg;tk þ ulukg;lkÞdN ¼ s½hhi;tt þ 2hhuki;tk þ hhukuli;lk�: ð31Þ
To eliminate the terms contain time derivatives in the above equation, we can consider
L5;t ¼ hhi;tt þ hhuki;tk ¼ OðsÞ ð32Þ
and the continuity equation
L1 ¼ h1i;t þ huki;k ¼ q;t þ ðqU kÞ;k ¼ OðsÞ: ð33Þ
Then Eq. (31) can be simplified as,
R5 ¼ s½hhuki;t þ hhukuli;l�;k þOðs2Þ ¼ s½ðHqU kÞ;t þ ðHU kU lÞ;l�;k þOðs2Þ ¼ sfH½ðqUkÞ;t
þ ðqUkUl þ pdklÞ;l� þ Uk½ðqHÞ;t þ ðqHUlÞ;l �Hq;t þHðqU lÞ;l� þ pH;kg;k þOðs2Þ
¼ s½HLk þ UkðL5 �HL1Þ þ pH;k�;k þOðs2Þ ¼ sðpH;kÞ;k þOðs2Þ ¼ ðDH;kÞ;k þOðs2Þ; k; l ¼ 1; 2:

ð34Þ
Here the diffusion coefficient D = sp is equal to the viscosity coefficient. That is, the Schmidt number is equal
to unity. Finally, combining Eqs. (28), (30) and (34) and dropping terms of O(s2), one can obtain the linear
convection–diffusion equation, as shown along with the NS equations in the following,
oW

ot
þ oðF iv

1 � Fvis
1 Þ

ox
þ oðF iv

2 � Fvis
2 Þ

oy
¼ 0; ð35Þ
where
F iv
1 ¼ ðqU ; qU 2 þ p; qUV ; ðqeþ pÞU ; qHUÞT;

F iv
2 ¼ ðqV ;qUV ; qV 2 þ p; ðqeþ pÞV ; qHV ÞT;

Fvis
i ¼ ð0; r1i; r2i; s3i; s4iÞT;

rij ¼ spðU i;j þ U j;iÞ þ ð1� 2sp=3ÞU k;k;

s3i ¼ U krki þ 0:25ðK þ 4Þlð1=kÞ;i;
s4i ¼ spH;i; i; j ¼ 1; 2:

ð36Þ
The bulk viscosity from the BGK model is 1 = 4sp/15 for a diatomic gas.
In an MD scheme, the flux across a cell interface in the local rotated coordinates is aligned with both the

normal and tangential slopes of the conservative variables. For a Q1D extension, only the normal slopes are
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considered and the tangential slopes are omitted. It is the same for a DS scheme, although the latter contains a
multistep procedure: first to calculate the flow-field Wn+1/2 at time tn+1/2 through the flux along the i direction,
and then compute the flux along the j direction based on Wn+1/2 to get the conservative variables Wn+1 at time
tn+1. In the present study, Godunov splitting [10] is considered. According to Eq. (35), the tangential slopes
seem to contribute to only the viscous stress r, and thus affect the numerical viscous flux (In the next section,
we shall find that they may affect the temporal accuracy of the scheme in the unsteady scalar convection–dif-
fusion). For example, consider the flux (stress) across a cell interface in the x direction,
r11 ¼ 2loxU þ ð1� 2l=3ÞðoxU þ oyV Þ;
r12 ¼ lðoxV þ oyUÞ:

ð37Þ
For a Q1D or DS method, the tangential slopes are omitted, with ba = 0, a = 1–5 in the MD scheme. Thus the
stress becomes
rN
11 ¼ 2loxU þ ð1� 2l=3ÞoxU ;

rN
12 ¼ loxV :

ð38Þ
Compared to Eq. (37), the above stress in the Q1D expansion and the DS method cannot recover the strain
rate tensor and the corresponding viscosity depends on the local rotation. It is true for any type of mesh, not
only unstructured, but also Cartesian mesh [22]. One can imagine that this omission of tangential derivatives
may result in an evident error in viscous flow simulations, especially for low-Reynolds-number flows. Another
situation is, if a flow is dominated by the tangential slopes of variables at a wall, such as thermal creep flow
controlled by wall temperature gradient, although the effect of tangential slope can be taken into account in
the flux across the cell interface normal to the wall, the omission of it may decrease the accuracy of a simu-
lation. However, for inviscid or high-Reynolds-number flow, a quasi-one-dimensional formulation or direc-
tional splitting version may be a good choice, as a multidimensional gas-kinetic reconstruction is much
more expensive, with about one third additional CPU time to calculate the flux related to tangential deriva-
tives for two-dimensional flows. For three-dimensional flows, this additional cost is more considerable, with
about a 50% increase. In the following, several tests are presented to investigate the necessity to use the MD
BGK scheme.
3. Numerical experiments

Six cases are tested with the MD and Q1D gas-kinetic BGK schemes, respectively, such as rarefied cylin-
drical Couette flow, thermal creep flow, high-speed microchannel flow, power-law fluid flow between rotating
cylinders, scalar convection–diffusion, and flow around a NACA0012 airfoil. The first four flows are domi-
nated by viscosity, thus the above-mentioned solvers for smooth flow are adopted, and the advantage of using
an MD scheme is expected to be better distinguished. For the last two cases, the general BGK method, with a
discontinuous particle distribution function, is used to investigate general multidimensional effects. To accel-
erate the convergence of the flow to steady state except for the scalar convection–diffusion case, the lower–
upper symmetric Gauss–Seidel (LU-SGS) implicit technology [23] is adopted. A steady solution is obtained
when the residual error for density is less than 1 · 10�6. The criterion is 1.5 · 10�8 for momentum in the
non-Newtonian flow case. The DS method is also considered in all the above-mentioned cases, only in the
explicit version which is expensive in steady flow simulation. It is found that the DS method predicts results
nearly identical to those from the Q1D scheme for steady flows, except for the power-law fluid flow case with
viscous exponential factor away from unity, in which a reasonable flow-field can hardly be obtained. Thus the
DS results in these cases are not presented for the conciseness. All the results show good mesh convergence.
Except for special explanations, they are not presented here because of the length limit of the article.

3.1. Cylindrical Couette flow

At first a rarefied cylindrical Couette flow is considered with a rotating inner cylinder of R1 = 3k, a station-
ary outer cylinder of R2 = 5k, and argon between them with mean free path k = 6.25 · 10�8 m at initially sta-
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tionary STP conditions (p0 = 1.0133 · 105 Pa, T0 = 273.15 K). Recent analytical and molecular dynamics
studies [24–28] suggest that the velocity profile in this case can become inverted for a small accommodation
coefficient, where the annular velocity of the gas becomes greater farther away from the moving center.

The MD and Q1D gas-kinetic BGK schemes are applied to this flow with the angular velocity of the inner
cylinder x = 5.17 · 108 rad/s. Thus the tangential velocity of the inner cylinder is about a third of sound
speed. The wall temperature is Tw = T0 and the accommodation coefficient r is 0.1. The computational mesh
is uniform in the circumferential direction, with cell number 100, and nonuniform in the radial direction, with
cell number 40 and minimal cell size 1.3 · 10�9 m near the solid walls.

Fig. 1 shows the predicted circumferential velocity profiles compared with the direct simulation Monte
Carlo (DSMC) results [24] and the analytical solution from the Navier–Stokes equations with Maxwell’s gen-
eral slip condition [29]. The result from the MD gas-kinetic BGK scheme shows good agreement with the ana-
lytical solution. Both have inverted annular velocity along the radial direction. That is, the gas travels faster
near the stationary outer wall. This distribution has been confirmed by other approximations [25,27]. The
deviation from DSMC data may come from the high rarefaction degree of the flow for which a high-order
model such as the Burnett equation is more suitable than the Navier–Stokes model.

On the contrary, the Q1D BGK scheme is not able to capture this important aspect of the physics of the
velocity inversion process. The calculated normalized annular velocity decreases along the radial direction and
is nearly identical to the analytical result from Maxwell’s conventional slip condition [29]. The difference
between Maxwell’s general slip condition and the conventional one is that the former accounts correctly
for shear stress at the solid wall by considering both the tangential slope of the normal velocity and the normal
slope of the tangential velocity. For a wall with curvature, or with rotational motion, such as a deflecting flap,
these two slopes can be of the same magnitude and cannot be neglected.

For the MD gas-kinetic BGK scheme, one can similarly understand the importance of the inclusion of the
tangential slopes (terms related to b in the last section) in the fluxes at a cell interface.

3.2. Thermal creep flow

Thermal creep flow, induced by the nonuniform temperature of a body, has been known for a long time
[21,30,31]. Here the flow between two stationary parallel plane walls (at y = 0 and y = L) with the same tem-
perature distribution
Fig. 1.
kinetic
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Nondimensional velocity profiles in cylindrical Couette flow. The symbol ‘MD’ represents the result with the multidimensional gas-
BGK scheme and ‘Q1D’ the quasi-one-dimensional extension. The DSMC data is from Ref. [24] and the analytical solution,
as ‘AS’, is from the study of Barber et al. [29] with Maxwell’s general and conventional slip conditions.
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T w ¼ T 0½1� Dsw cosð2px=LÞ� ð39Þ

is considered, where L is the distance of the two walls and T0, Dsw are constants. For a slightly rarefied gas, the
induced flow velocity is shown with the same order as the Knudson number [21], which cannot be easily cap-
tured by a numerical method.

In the present study the Knudson number Kn = k/L = 0.005, pressure p0 = 1.0133 · 105 Pa, temperature
T0 = 273.15 K with constants Dsw = 0.5 are adopted. Here the mean free path is calculated with
k = 3.2(2pRT0)�1/2l0/q0 and q0 = p0/(RT0). The computation is started with an initial flow field with zero
velocity and constant pressure p0 throughout. The initial temperature is set same as that of the wall (Eq.
(39)) along the x-direction and uniform along the y-direction. After steady flow is established, the pressure
in the field shows some increase to about 1.18 · 105 Pa. The gas is supposed to be nitrogen with a viscosity
given by Sutherland’s law, l = lref(T/Tref)

1.5(Tref + Ts)/(T + Ts), lref = 1.663 · 10�5 Pa s, Tref = 273.15 K,
Ts = 106.7 K, the specific heat ratio, c = 1.4, and the Prandtl number, Pr = 0.718. In view of symmetry, the
computational domain is chosen as 0 6 x 6 L/2 and 0 6 y 6 L/2, similar to the study of Sone [31]. 40 · 40
computational cells are used and the cell size is uniform in the x-direction and stretched in the y-direction with
the minimal cell size (at the wall) Dymin = 0.2Dx.

Fig. 2 shows the temperature fields calculated with the MD BGK and Q1D scheme. Generally, both results
are consistent with those from the asymptotic theory [31]. But the difference of the results between MD and
Q1D scheme is obvious. More importantly, it should be noted that the induced velocity in Fig. 2 is computed
with the MD scheme, and the velocity from the Q1D scheme with the same computational mesh is about two or
three magnitudes less. This can be observed in Fig. 3 where the velocity captured by the Q1D scheme is nearly
zero. Similar results are obtained with the DS method, although they are somewhat better than the Q1D pre-
diction. The maximal normalized velocity near the wall predicted by MD is achieved at about x/L = 0.29 with
value 0.0036, in good agreement with the asymptotic solutions of kinetic theory (about 0.0041). It should be
noted that the actual Knudsen number computed according to the averaged density of final steady state is about
0.0044, less than that for the asymptotic theory, 0.005. However, the difference between the present MD results
and the asymptotic solution, may also come from the different viscosity model and other rarefied effects not
being taken into account, such as the nonlinear thermal stress and other high-order effects. Different wall
boundary conditions, obtained by the analysis of the Knudsen layer in the asymptotic solution and simply con-
structed through the Chapman–Enskog expansion in the present study, including the wall temperature jump,
not being considered in the former, may also take some responsibility for the disagreement.
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As the induced flow is very weak in this case, the computation should be carried out very carefully. As
shown in Fig. 3, good mesh convergence is obtained, confirming the accuracy of the present results.

Interestingly, we observe that, when the flow is computed with the Q1D scheme and multidimensional
kinetic boundary conditions, that is, ba = 0, a = 1–5 is not set only in Eq. (22), a satisfactory result can also
be obtained, except the maximal velocity is somewhat less than the MD result. This is understandable since the
flow is weak and dominated by the wall temperature gradient, thus the inclusion of tangential slopes in the flux
only at the wall can significantly improve the result. For cylindrical Couette flow and high-speed microchannel
flow (in the following), only multidimensional boundary conditions, or with multidimensional scheme only
near the wall (within one or two cells), it is found not easy to obtain a convergent solution. This may come
from the inconsistency of the fluxes from MD and Q1D across different interfaces of a cell at the boundary.

In brief, the MD BGK scheme can correctly resolve the weak flow field induced by nonuniform temperature
of a wall, whereas the corresponding Q1D and DS schemes fail. Without inclusion of the tangential slopes of
conservative variables, the Q1D and DS cannot accurately account for the effects of wall temperature gradient
in the flux computation, and thus cannot capture the induced flow field.

3.3. High-speed microchannel flow

The characteristics of the flow in microchannels are important for micro-electro-mechanical systems
(MEMS), such as microheaters, microheat exchangers/sinks for electronic cooling and microspacecraft con-
trols. Rarefaction, compressibility and thermal creep dominate the flow in most of the MEMS, as well as
the surface forces, roughness and viscous forces. Previous studies show that the gas-kinetic BGK scheme is
able to capture these dominating effects at small Knudsen numbers, such as Kn < 0.4 [7,16,18]. Here the Knud-
sen number is defined with channel height H, Kn ¼ 16l=ð5qH

ffiffiffiffiffiffiffiffiffiffiffiffi
2pRT
p

Þ.
In the present study, the performance of the MD BGK scheme and the Q1D method are investigated in

microchannel flow with high-speed inflow. The computational parameters are chosen to be the same as in case
2 of Oh et al. [32] with channel length L = 5 lm, height H = 1.2 lm and wall temperature Tw = 298 K. The
pressure is set to 1.01 · 105 Pa at both the inlet and outlet. The inflow is supersonic helium, Ma = 5.0, with
temperature T = Tw, specific ratio c = 5/3, Prandtl number Pr = 0.704 and R = 2076.9 J/kg K. The viscosity
is given by l = l0(T/T0)x with l0 = 1.865 · 10�5 N s/m2, T0 = 273.15 K, and x = 0.67. For symmetry about
the centerline of the microchannel, only half domain is computed to reduce the CPU time, with 296 · 40 cells
and the minimal cell size Dx = 0.009 lm at the inlet and outlet and Dy = 0.006 lm at the wall. Similar to case 1
of Raju and Roy [33], two additional freestream regions are specified with length 1 lm near the inlet and



542 Q. Li, S. Fu / Journal of Computational Physics 220 (2006) 532–548
0.2 lm near the outlet where the accommodation coefficient r = 0 is adopted at the wall, and otherwise it is set
to be r = 1.

Fig. 4 shows the temperature and velocity distributions near the microchannel wall. In general, the present
results with gas-kinetic BGK scheme agree well with the DSMC data [32] and can be observed better than the
result of Raju and Roy [33] with a finite element based hydrodynamic model and first-order slip boundary
conditions. Furthermore, the MD scheme yields better results, with larger temperature jump and velocity slip,
than the Q1D scheme, when compared with the DSMC data. The flow-induced temperature modification at
the wall is correctly taken into account by the inclusion of tangential slopes in fluxes in the MD scheme. Thus
better results can be obtained. This improvement of the wall quantities distribution by an MD scheme can also
clearly lead to better results throughout the flow-field (shown in Fig. 5), when compared with the DSMC
results [32], although both can capture the flow structures, such as the detached bow shock waves in front
of the leading edge, formed because of the viscous boundary layer. The intersection of the leading shocks
and reflections from the wall, which usually exist in macro channel flow, cannot be clearly seen due to the
strong viscous diffuse.

3.4. Non-Newtonian fluid flow between concentric rotating cylinders

For macro flow the multidimensional scheme is also expected to yield better results than Q1D. Here the
cylindrical Couette flow with a power-law fluid is considered. The dimensionless radius of the inner and outer
cylinders are R1 = 1.0 and R2 = 2R1 along with 100 cells in the circumferential direction and 50 in the radial.
The inner cylinder is rotating with angular velocity x = 1.0 and the outer is stationary. The apparent viscosity
of the fluid is given by the power-law,
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where S is strain rate of the flow, n > 0 is the exponential factor, and l0 = 0.02. Factor n = 1 corresponds to a
Newtonian fluid, n > 1 shear-thinning fluid and n < 1 means shear thickening. The initial density is given as
q = 1.0, pressure p = 1/(cM2) with c = 1.4 and Mach number M = 0.01 to approach incompressible flow.
Nonslip isothermal wall boundary conditions [6] are adopted. The gradients of velocities in the strain rate
are from the reconstruction of macroscopic variables at a cell interface for each computational time step.
For an incompressible flow, the analytic solution can be deduced as,
uhðrÞ ¼
x

R�2=n
1 � R�2=n

2

ðr�2=n � R�2=n
2 Þr: ð41Þ
It can be seen in the above expression that when n < 2 the circumferential velocity profile is concave, for n = 2,
linear, and for n > 2, convex.

In the present study, four cases are calculated with exponential factors n = 1.4, 1, 0.6 and 0.2, respectively.
For n = 1 the MD and Q1D schemes produce identical results and both agree with the analytic profile excel-
lently, as shown in Fig. 6. With decreasing n the result from the MD scheme can be observed to still be in good
agreement with the analytic solution, but the result from the Q1D method shows larger and larger deviation,
such as for the case with n = 0.2. In the case with the factor away from unity, the DS scheme is found not be
able to give convergent flow field, or solution close to that from MD and Q1D, which is different from other
steady flow cases in the present study. For a power-law fluid, the apparent viscosity is strongly affected by the
strain rate when the exponential factor is far away from unity. Thus the results are sensitive to the accuracy of
the shear stress computation. The Q1D/DS scheme is not able to give an accurate stress at a cell interface,
resulting in great errors in the corresponding calculated velocity. Similar situations should be paid attention
to, such as in turbulence modeling, where the vortex viscosity is also a function of the strain rate of the aver-
aged velocity.

3.5. Square wave convection and diffusion

It is difficult to evaluate accurately a multidimensional solver for compressible flow, for the lack of an ana-
lytic solution. To further study multidimensional effects, the accuracies of both MD and Q1D schemes are
verified by simulation of the scalar transport equation
Ht þ UHx þ V Hy ¼ DðHxx þHyyÞ ð42Þ
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H ¼
1 if a 6 x 6 b and a 6 y 6 b;

0 else;

�
ð43Þ
where a, b are constants. The analytical solution can be found in Ref. [7]. In this unsteady flow case, the direc-
tional splitting scheme (DS) is also investigated. First of all, the aforementioned solvers for smooth flow are
considered. Then we shall discuss the general BGK solver with a discontinuous distribution function.

3.5.1. Smooth flow solver
The computational domain is chosen as [0,1] · [0,1] with parameters U = V = 100, a = 0.175, and

b = 0.225. The boundary values are implemented according to the theoretical solution. The cell size is uniform
and the diffusion coefficient is set to be D = 2.

The error norms are calculated with different cell size Dx (=Dy). The computations are all started from the
analytical solution at time t = 4 · 10�3 with time step size fixed to a very small value, Dt = 5 · 10�10, to elim-
inate errors in time. The error norms L2 and L1 after one time step are presented in Fig. 7(a), which show that
the MD scheme, the Q1D extension and the DS method have second-order accuracy in space, and their dif-
ferences can hardly be seen. According to the aforementioned discussion in Section 2.4, in this linear convec-
tion–diffusion case, the omitting of tangential derivatives in a BGK scheme does not affect the spatial
accuracy, as there is no viscous stress in the scalar convection–diffusion equation, which is different from
the momentum transport.

Similarly the error norms with different computational time step size are calculated with a fine mesh,
Dx = 1/1280. The error norms are computed also after only one time step starting from t = 2 · 10�3. The error
curves in Fig. 7(b) show nonmonotonic behavior. For large value of the CFL number, defined as,
CFL ¼ Dt
Dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2 þ V 2

p
þ 2D

Dx

� �
; ð44Þ
all of the schemes are more than second-order accurate in time, which is consistent with the study of Ohwada
[34]. Recently, Torrilhon and Xu [35] studied the one-dimensional BGK scheme for the advection–diffusion
equation in detail and found this so-called ‘‘super-convergence’’ characteristic. The errors from the MD
scheme are more than 50% smaller than those from the Q1D scheme. Thus, the inclusion of tangential slopes
of conservative variables in fluxes at the cell interface significantly increases the temporal accuracy.

The same conclusion can be drawn for a high-accuracy gas-kinetic scheme, such as Xu’s scheme in low-
speed flow [8], where a high-order interpolation of the conservation variables and their slopes at a cell interface
0.04 0.08 0.12
10-16

10-14

10-12

10-10

10-8

10-6

Δx
0.04 0.08 0.12

10-16

10-14

10-12

10-10

10-8

10-6

MD
Q1D
DS
HA MD
2nd

3rd

L2

L∞

b CFL

E
rr

o
r

N
o

rm

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
10-13

10-12

10-11

10-10

10-9

10-8

10-7

MD
Q1D
DS
2nd

3rd

L2

L∞

Variations of error norms with: (a) computational cell size; (b) time step. The lines symbolized by ‘2nd’ and ‘3rd’ indicate the trends
second-order and third-order accurate schemes, respectively. Both the L2 and L1 norms are normalized by the instantaneous
al value.



Q. Li, S. Fu / Journal of Computational Physics 220 (2006) 532–548 545
is adopted. Although the accuracy in space is higher than third order, as shown in Fig. 7(a) and represented by
‘HA MD’, an MD method can yield better results with smaller numerical errors not in space but in time (sim-
ilar to the present scheme and not presented here).

The DS method can be seen to have clearly smaller errors than the MD one for large CFL number. This can
be understood through the conventional (PDE based) directional splitting (operator splitting) method. With
the help of intermediate variables Wn+1/2, the temporal accuracy of a scheme for multidimensional flow may
be improved under some conditions.

3.5.2. BGK method with discontinuous distribution function

For the general BGK scheme, the particle distribution function is constructed separately on two sides of a
cell interface to capture flow discontinuities, such as shock waves. Here the multidimensional, quasi-one-
dimensional extension, and the directional splitting versions are all investigated.

Here we consider the performance of these flow solvers with a fixed CFL number and different grid Rey-
nolds number
a

Fig. 8.
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change
ReDx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2 þ V 2

p
Dx=D: ð45Þ
That is, the combination of spatial and temporal accuracy is studied. The results is shown in Fig. 8. Again the
nonmonotonic behavior can be seen. For a well-resolved flow region, with low grid Reynolds number, the per-
formance differences of the MD, Q1D and DS methods can hardly be seen. With increasing grid Reynolds
number, such as ReDx > 1, the Q1D shows progressively larger errors, while the DS scheme seems a little better
than the MD one. For ReDx � 10, the Q1D method produces errors almost larger than an order of magnitude.
But with a large grid Reynolds number, such as ReDx > 100, all the schemes yields similar results. This can be
explained as following. As the time step Dt decreases much faster than the cell size Dx for a given CFL number
(see Eq. (44)), for low ReDx, the effects of Dt becomes much smaller than that of Dx, leading to the small dif-
ference of MD, Q1D and DS methods. On the other hand, for large ReDx, the flow field is not well resolved,
and the artificial dissipation from the discontinuous distribution function in the schemes dominates the errors,
resulting in small difference among these methods. The advantage of the MD and DS methods mainly exists in
the moderate-ReDx region, corresponding to ‘super-convergence’ behavior [35].

In Fig. 8 it can be seen that the limiter in the conservative-variables reconstruction of a BGK scheme may
spoil the results at very low ReDx, when compared to the results from the multidimensional scheme, labeled
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‘MDA’, with the central difference to calculate the slopes on both sides of a cell interface. But for the large
ReDx case, a limiter is necessary to inhibit nonphysical oscillations. The DS scheme also shows good perfor-
mance. Its low memory requirement and simplicity of written code are also very attractive. In brief, the inclu-
sion of tangential slopes in the MD scheme can clearly increase temporal accuracy.

3.6. Low-Reynolds-number flow around an airfoil

The effect of inclusion of tangential slopes in a BGK method with a discontinuous distribution function is
also investigated in the flow around a NACA0012 airfoil. This test case has been previously used as a bench-
mark for viscous flow [22,36]. The flow conditions are Mach number M = 0.8, attack angle a = 100, Reynolds
number Re = 73. A C-type mesh with 288 · 89 cells is adopted. The computational domain is chosen as 10
0.
71

0.83

0.890.65

0.53

0.77

0.89

0.77

0.
95

0.53

0.35

0.23

0.77

0.47

x/L

y/
L

-1 0 1 2 3

-1

0

1

2

Fig. 9. Mach number contours for NACA0012 airfoil at M = 0.8, a = 100 and Re = 73. Solid line is for multidimensional scheme and
dash dot quasi-one-dimensional method.

x/a L

C
p

0 0.2 0.4 0.6 0.8 1

-1

0

1

2

MD
Q1D

x/b L

C
h

0 0.2 0.4 0.6 0.8 1
-0.05

0

0.05

0.1

0.15
MD
Q1D

Fig. 10. Pressure coefficient (a) and heat flux coefficient (b) distribution along the NACA0012 airfoil at M = 0.8, a = 100 and Re = 73.



Q. Li, S. Fu / Journal of Computational Physics 220 (2006) 532–548 547
times the length of foil chord L, and the normal grid Reynolds number near the surface of the airfoil is about
ReDy = 0.2. As the flow can be well-resolved, no limiter is used in the reconstruction of variables at a cell inter-
face. Nonreflecting conditions [37] for the far field boundary and isothermal nonslip conditions at the foil sur-
face are used in the present study.

Fig. 9 shows the computed Mach number distributions. The results of the MD and Q1D methods show
only a little difference and both agree with those of May et al. [22] calculated with the CUSP scheme. The same
conclusion can be drawn for the wall pressure distribution (see Fig. 10(a)) except for the nose region, where the
Q1D method yields high pressure. But for some sensitive quantities, such as the wall heat flux, normalized by
q1V 3

1=2 and shown in Fig. 10(b), the multidimensional scheme does give obviously different results. However,
more numerical and experimental data are required to further validate the computation.
4. Conclusion

The present paper investigates the advantage of the multidimensional gas-kinetic BGK scheme compared
with the corresponding quasi-one-dimensional extension and Godunov directional splitting scheme. The con-
struction of an MD BGK scheme with scalar transport in the smooth flow region is introduced with the inclu-
sion of the tangential slopes in the flux computation, which are absent in a Q1D or DS version.

The present study shows that the MD scheme can capture the inverted velocity profile in a rarefied cylin-
drical Couette flow, the weak flow field induced by a nonuniform wall temperature with low Knudson number,
while the Q1D fails. In high-speed microchannel flow and power-law fluid flow between rotating cylinders, the
MD scheme can also yield clearly better results than the Q1D method. In the low-Reynolds-number flow
around a NACA0012 airfoil case, the MD and Q1D predict wall heat flux distribution with obvious difference.
The DS method predicts results nearly identical to those from Q1D in these steady flow cases, except that it is
not able to give reasonable solutions in non-Newtonian fluid case with viscous exponential factor away from
unity. Correct prediction of the stress and the wall temperature gradient is considered responsible for this bet-
ter performance.

In the simulation of linear convection–diffusion equation, the present study shows that the inclusion of tan-
gential slopes in the flux is able to increase the accuracy obviously not in space but in time. In this case without
viscous stress effect, the directional splitting technique can also improve the temporal accuracy.

However, for some cases, such as computation with a coarse mesh, or with a large grid-Reynolds-number,
numerical dissipation may conceal the improvement from the MD scheme. Then a Q1D gas-kinetic BGK
scheme or the DS one is a good choice, as an MD scheme takes more computational time, and sometimes
a DS method is more robust, and requires less memory. Additionally, for unsteady flow or flow with high-
Reynolds number, the performance difference between the MD, Q1D and DS schemes still requires further
study. Nevertheless, the present study gives several benchmark test cases for Navier–Stokes solvers, and
through them shows that one should be cautious to adopt the Q1D or DS scheme in any case that is sensitive
to the accuracy of the stress or wall variable gradient calculation. It is then worthwhile to use the MD scheme
for high performance. The present results are also expected to be helpful for the construction and application
of other multidimensional methods.
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